Weak Sequential Composition in Process Algebras
نویسندگان
چکیده
In this paper we study a special operator for sequential compo sition which is de ned relative to a dependency relation over the actions of a given system The idea is that actions which are not dependent intuitively because they share no common resources do not have to wait for one another to proceed even if they are composed sequentially Such a notion has been studied before in a linear time setting but until recently there has been no systematic investigation in the context of process algebras We give a structural operational semantics for a process algebraic language containing such a sequential composition operator which shows some inter esting interplay with choice We give a complete axiomatisation of strong bisimilarity and we show consistency of the operational semantics with an event based denotational semantics developed recently by the second au thor The axiom system allows to derive the communication closed layers law which in the linear time setting has been shown to be a very useful instrument in correctness preserving transformations We conclude with a couple of examples
منابع مشابه
Derivations on dual triangular Banach algebras
Ideal Connes-amenability of dual Banach algebras was investigated in [17] by A. Minapoor, A. Bodaghi and D. Ebrahimi Bagha. They studied weak∗continuous derivations from dual Banach algebras into their weak∗-closed two- sided ideals. This work considers weak∗-continuous derivations of dual triangular Banach algebras into their weak∗-closed two- sided ideals . We investigate when weak∗continuous...
متن کاملCritical fixed point theorems in Banach algebras under weak topology features
In this paper, we establish some new critical fixed point theorems for the sum $AB+C$ in a Banach algebra relative to the weak topology, where $frac{I-C}{A}$ allows to be noninvertible. In addition, a special class of Banach algebras will be considered.
متن کاملArens Regularity and Weak Amenability of Certain Matrix Algebras
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
متن کاملHomomorphism Weak amenability of certain Banach algebras
In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...
متن کاملBounded approximate connes-amenability of dual Banach algebras
We study the notion of bounded approximate Connes-amenability for dual Banach algebras and characterize this type of algebras in terms of approximate diagonals. We show that bounded approximate Connes-amenability of dual Banach algebras forces them to be unital. For a separable dual Banach algebra, we prove that bounded approximate Connes-amenability implies sequential approximat...
متن کامل